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A MATHEMATICAL MODEL OF THE DEFORMATION AND FAILURE OF ROCK MATERIALS®

5.5. GRIGORYAN, S£.V. DZHANASHIYA and G.V. RYKOV

A mathematical model is proposed for the deformation and failure of rock
materials in which the bulk plastic deformation rate includes hydrostatic ang
dilatancy components. The latter is taken to be proportional to the
rates of change of the stress teénsor invariants. Shear is described by
plastic flow theory relationships analogous to /1-3/. The  model
relationships do not take account of effects associated with the influenve
of the strain rate on the fracture process. Therefore, the model proposed
can be considered as the limit, dynamic or static., It is conceivable
that the guantitative measure of the effects taken into accopunt and the
specific form of the main dependences for the two limit models will be
distinct for an identical material.

Within the framework of the model proposed, guantitative data are
presented on the mechanical characteristics of different mountain rocks
obtained on the basis of the authors' statistical treatment of static
test results published in the literature.

A number of mathematical mountain rock models have been  proposed
/i, 4-9/ that reflect available experimental data on their deformation
and fracture under static and dynamic loads to some degree /l0-22/.
Within the framework of these models the mountain rocks are considered
as a continuous medium in the elastic and plastic stages of operation as
well as in the fractured state, It is assuped here that considerable
changes ocoour in the state of stress of such & medium at distances
considerably exceeding the block dimensions into which the medium is
separated in the developed fracture stage.

As is seen from the experimental data /10-22/, the important effects
observed during fracture are the change in strength and the occurrence
of additional porosity in connection with the appearance of block dis-
integration, the appearance of so-called dilatancy of the medium.

It is assumed in the formulation of the mathematical models for such
media in /6-9/ that the rate of the dilatancy component of the bulk
strain is proportional to the shear rate. The rate of the dilatancy
component of the bulk strain in /7, 9/ depends additionally on the first
invariant of the stress tensor,

1. Let us consider the available experimental data characterizing the fracture process
for gpecimens of sufficiently strong rocks.

Fig.l shows results of testing grey sand specimens with density 4 == 2.48 g}cmg,parasity
w = 59% under non-proportional loading conditions /15/ {0y, 0y = gy == gonst, oy, Gy, 0y @are the
principal stresses). Here o =1, {o, -+ 2¢), 2 is the bulk strain. Tests were performed on a
"rigid” apparatus which enabled us to obtain the descending section on the material strain
diagram. The values nf ¢, varied during testing between 3 and 150 MPa in different tests.

The presence of three characteristic points corresponding to the appearance of plastic
deformations, the achievement of the maximum specimen strength, i.e., the maximum stress

of** and the achievement of the residual strength when the increase in the bulk strain

ceases, should be noted.

An analogous phencmenon is also obgerved for conditions of proportional specimen loading
(g,/0, = const, o, = 0,) /10/. .

The geometric loci of these three classes of points in the pflz.u plane will be curves
corresponding to the conditions of the initial, maximum, and residual strength, which  are
cbviously independent of the loading trajectory /17, 18/.

Processing the results of experiments /12-14/, conducted with Thollow and solid
cylindrical specimens of different mountain rocks under conditions of simultaneous compression
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and torsion (0,5« 0,3 0,) showed, in particular, that the curves of the initial and maximum
strength can also be considered to be independent of the third stress tensor invariant [,

0, 0, O3. The corresponding maximum strength curves for certain rocks are presented, according
to the data in /12/, in Fig.2 {curve I is for limestone, y = 2.60 g/cm3, w =4%79%, and
curve 2 is for dclomite, v — 2.8% g/cm3, w =0.9%). The numbers I-4 denote points obtained
in tests for different values of (I (MPa) I —0; 2 — 100 — 230; § — —50 — —130; 4 — — 150 —
—290.

The experiments show that a further growth of the "plastic" deformations of disinte-
gration under decreasing stresses occurs after the maximum strength is reached. This process
is terminated by reaching the residual strength curve in the (}/.1_2, ¢) plane which characterizes
the ability of the fractured speciment still to carry a certain load /15, 16, 19/.
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2. The experimental data presented above enable us to introduce three limit character-
istics of the rocks, the initial strength condition F(oy) =0, the maximum strength con-
dition  Fy(oy) =0, and the residual strength condition  Fy(oy) = 0.

Assuming these conditions tc be independent of the loading history and of the third
stress tensor invariant as an essential hypothesis, we write them in the invariant form

VIi=Fi (o), k=1,2 3 2.9
o = 11/3, 11 == Oppy J’ = [’ e 111/6 = l/’ S"S”

where Iy, I+ are the stress tensor invariants Sy == 0,4~ 08,, are the stress tensor deviator
components, and Oy are the stress tensor components, i, j =1, 2, 3.

We will introduce a relationship expressing the condition of plasticity in shear strain,
which as is seen from the experimental results presented above will depend on the hardening
characteristics in the general case. We will take the bulk plastic dilatancy deformation gp?
as the hardening parameter and we will use for the plasticity condition in shear

V7: = F(o, eo®) 2.2)
Taking account cf the plasticity condition (2.2), we write the flow relationships for
the plastic shear strain increments, as in /2/, in the form

1 ds.;.
Gell’EG(eU_T‘k*GU)z"—d’}‘L +’~Su (2.3)
l:G““ — F dFjdt e(W)e(]/T,—F) (24)
W' = S”e”' (25)

Here #;; is the strain rate tensor; the remaining notation is standard /2/.
The definition of the shear strain unloading is also contained in these relationships:

" =0 should be in such an unloading, but by definition e;? = A §/G in (2.3), there-

fore, ¢, =0 for A =0, and according to (2.4) this holds for W' =0 and VIi:<F
since ef{u)=1 for u>»0 and ef{u)=0 for u<O.

Furthermore, we shall assume that the plasticity condition (2.2) is associated with the
limit characteristics (2.1) introduced above by the relationships

F=Fq4=(F,—F)f(ed”) + F (2.8)
F=Fy=(F,— Fy)f2(ed’) + F;s
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Here Fa corresponds to the pre-limiting loading and strain states, i.e., the states being
realized on changing from the initial to the maximum strength, and Fpg correspond to the post-
limiting, states i.e., the states obtained on changing from the maximum to the residual
strength. The functions f,, f, determined experimentally characterize the dependence of the
shear plasticity condition on the hardening parameter ep’.

3. We will now construct relationships governing the volume deformability of a medium.
The volume strain rate de/dt =e = exx is represented in the form of a sum of the elastic
component ¢ and the plastic component ¢®, while ¢ is represented in the form of the sum of a
"hydrostatic" component ex? and a dilatancy component ep? .

As in /2/, we take a deformation-type dependence

e* = ey —eg® = ¢ (0, ex) 3.1)
for the elastic part e of the bulk strain hydrostatic component eg.
The family of lines in the o, &* plane governed by relationship (3.1) for ey® = const

is the elastic strain law for hydrostatic loading. The cumulative hydrostatic component of
the irreversible bulk strain is determined by the "kinetic" equation

Lol O 90) (S ) oo e 32)

emax = ¥ (ex”)
and the function ¥ is obtained from (3.1) for e° = enax, 0 = Oy, where
Op = (en®) = f (en” + ehuas) @.3)

The function f(f! is the function inverse to f) in (3.2) and (3.3) governs the loading
branch of the hydrostatic compression diagram of the medium.

The definition of unloading from the plastic deformation state during hydrostatic loading
and unloading processes is also contained in the relationships presented above.

To determine the dilatancy component of the plastic strain ep? we take a hypothesis ex-
pressed by the relationship

dep?
dt

=A,d—d]tLe(W') (3.4)

where W’is the energy dissipation rate by the shear strains determined by means of (2.4),
J;(f =1, 2, 3) are the stress tensor invariants, and A; are certain functions of the quantities
Jy, ep®, ey’ and possibly other parameters.

Definitions of the loading and unloading concepts for dilatancy strain are contained in
relationship (3.4): dep? >0 for W > 0 for loading, and dep’ =0 for W <0 for
unloading.

In general the relationship (3.4) is not integrable with respect to the variable Jy, where
Aj can depend on the loading "history" in a complex manner, i.e., on the parameters ep?, ex”
and others and can alsoc be distinct in the pre- and post-limit states.

In the special cases of simple loading trajectories, for instance for oy = g, 0y/0;, = const
or for o3 = 05 = const and increasing o0, as hold in the experiments discussed above, the
relationship (3.4) can be integrated and reduced to the form

ep’ = @ (o, V7;’ I, ay) (3.5)

where a3 are parameters characterizing this class of loading trajectories. The representation
(3.5) will certainly be distinct for the pre- and post-limit loading modes.

The relationships constructed above form a closed model of a medium experiencing irre-
versible shear, bulk hydrostatic and bulk dilatancy strain. According to the model relation-
ships, the mechanical energy dissipation (the work of the stress on the irreversible strain)
is positive.

4., Processing of the available experimental results /10-22/ enabled us to make this
model specific as follows. The function @ characterizing the pre-limit strain of the medium
was obtained in the form

o,=a(a—“ﬁ-)” (4.1)

o—R,

=1+ LY AV T =VT,—(V7)e

where Rj is the strength of rocks under tension (compressive stresses are considered to Dbe
positive, i.e., R, < 0); @, x are experimental coefficients presented in the table of dif-
ferent rocks, and also in Fig.3 as a function of values of the elastic wave propagation
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velocity @4 in these rocks; (VJz), is the value of 1/.7; satisfying condition (2.1) for
k=1.
3
Mountain. Rock If:, :;1;2 le cv;v?/‘} ’ﬂcm] [ : 10 | a -,: 108 :: % ::
Quartzite: [22] 281 _ 0.5 1.16 5.86
8400 1,87 - 0.96 0.79 -
Sandstone P-0 [10]] 235 2.76 3.6 3.15 5.61
6060 0.36 T - 0.86 0.79 -
Diorite [10] 232 el 2.65 2.65 6.21
6000 0.15 ENA - 0.88 0.79 -
Quartzite [19) 211 _ 10.4* | 17.5 1.45 1,65 2.02
5850 43 0.62 0.99 0.98 0.93
Granodiorite [17] 207 2.67 2.0 1.37 6.26
5800 0.7 50 - 0.89 0.76 -
Granite [21] 263 2.65 2.86 0.89 3.16
4900 3 38 - 0.99 0.88 -
Diabase [10] 200 2,97 5.31 3,01 3.92
5750 0.98 20 - 0.88 0.85 -
Siltstone: [10] 181 3.18 5.0 7.7
5600 - 2.09 - 0.78 0.75 -
Granite [19] 160 40,6 31.12 2,23 1.86 1.04
5300 - 311 0.57 0.9 0.9 10
Sandstone: [15] 140 2.49 76.4% 16.15 6.6 6.0 3.84
5100 59 2,81 T0.52 0,75 0.78 0.82
Sandstone D-8[10] 184 2.49 1.89 2.44 8.88
5030 74 4.92 - 0.88 0.72 -
Sandstone [17]) 132 2.45 2.5 2.5 8.79
4500 85 |50 - 0.83 0.71 -
Limestone [10] 79 2.97 5.6 2.24 11.31
4220 = 4.61 - 088 0.65 -

The values of a, indicated in the table (except those cited according to /17, 21/) were
determined from data in /23/ as a function of strength under uniaxial compression.

Figs.4a and b show as an example the results of determining the functions (4.1) from
experimental data /10/ corresponding to the results of testing grey sandstone specimens with
y'é 2.76 g/cm3 and w=0.36% under proportional loading conditions. The numbers I1-4 on the
graphs denote the test data for the respective values of a,/o; : 1 — 0; 2 — 0.069; 3 — 0.116; 4 — 0.178.
It is seen that the experimental points corresponding to different values of the ratio 0y/0y
are described well enough by one curve.

The post-limit plastic bulk strain is represented by the relationship

. SYTs \*+ F —F,
@, = 2her + 4 (’r‘{’izf‘) s H=Rnﬁ (4.2)
V= VT~V
where oy, 5(, are the experimental coefficients (see the table), (V-fz). is the value of

V' J: when condition (2.1) is satisfied for k = 2, R and R is the strength of the mountain
rock under tension, taking its variation during the fracture process into account.

Exactly as in the case of the pre-limit strain, the experimental points for different
values of g (I — 3; 2 — 10; 3 — 25, 4 — 50; 5 — 100; 6 — 150 MPa) are described well by a single
curve (Fig.5S).
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The functions Fyx(0) are obtained in the form
Fy(o) =ay (o — R)™ k=1,2,3 (4.3)

/
:; / // / where the values of ax, ¥ are presented in the
4 x3 £ 0 of table for different rocks. The points 1 In Fig.6a
o4 / / / and b are referred to the quantities wv,,4; and the
s / / points 2 to v;,-€;.
ab / / The functions f; (ep®) and f,(ep?) are rep-
2 4 4 resented by the formulas
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The results presented above for the processing (with the exception of those marked by
asterisks in the table) indicate the sufficiently representative correlation dependence of the
parameters a, X, Gy, dz, Ggy Vi, V2, V3 for the majority of the mountain rocks considered on the
velocity of elastic wave propagation &, in these rocks.

The correlation dependences obtained can be utilized for preliminary estimates of the
main mountain rock characteristics within the framework of the proposed model when data is
available solely on the longitudinal elastic wave propagation velocity ae-
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STRENGTH CRITERIA OF AN ANISOTROPIC MATERIAL™

B.E. POBEDRYA

Strength criteria are proposed for anisotropic materials as a general-
ization of the well-known phenomenological criteria for an isotropic
medium based on the introduction of certain functions of the stress tensor
invariants.

1. The viewpoint, according to which a composite is treated as a certain reduced homo-
geneous body /1, 2/, is well-known. If even each component of the composite is isotropic here,
the reduced body possesses an anisotropy which is customarily called structural /2/.

A fairly large number of strength criteria, that agree to some extend with experimental
data /3, 4/, have been developed for isotropic materials. The majority are based on the
introduction of a certain function, which depends on the stress tensor, that describes a
surface encompassing the safe stress states in the stress space

F(Ylv Yz, Yl) =0 (11)

The function (1.1) should understandably depend on the temperature and possibly other
parameters of a physicochemical natuxe. However, for simplicity we shall consider all these
parameters to be fixed. Here VY,(a =1, 2, 3) are three independent invariants of a symmetric
stress tensor /5/, for which we can select, say

Yl =0 =gy, YV, = g, = (sllsu)'/'v Y! == det I 8¢y I (12)

where ¢, is the intensity of the stress tensor || oy;||i summation from 1-3 is over repeated
subscripts.

It is sometimes assumed that the function F is independent of the third invariant -Yy and
the criterion (1.1) is represented in the form

flo) = K (8) (1.3)
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