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A m~tbem~~~cal model is proposed for the deformation and failure of rock 
materials inwhichthebulkplastbicdeforntation rate includes hydrostatic and 
dilatancy components. The latter is taken to be proportional to the 
rates of change of the stress tensor invariants. Shear is described by 
prastic flow theoxy relationships analogous to /l-3/. The model 
relationships do not take account of effects associated w~ththe~nf~ue~~e 
of the strain rate an the fracture process. Therefore, the model proposed 
can be considered as the limit, dynamic or static, It is eoneeivable 
that the quantitative measure of the effects taken into account and the 
specific foxm of the main dependences for the two limit models witi1 be 
distinct for an identical material. 

Within the framework of the model proposed, quantitative data are 
presented on the mechanical characteristics of different mountain rocks 
obtained on the basis of the authors' statisticaf treatment of static 
test results pelished in the Literature. 

A number of mathematical mountain rock models have been proposed 
/I., 4-91 that reflectavailable experimental data on their deformation 
and fracture undex static and dynamic loads to some degree /'U-22/. 
Within the framework of these models the mountrxin rocks are considered 
as a continuous medium In the elasti- \- ana plastic stages of operation as 
w&l as in the fractured state. It is assumed here that considerable 
changes occur in the state of stxess of such a medim at distances 
considerably exceeding the block dimensions into which the medium is 
separated in the developed fracture stage. 

As is seen from the experimental data /1Q-22/, the important effects 
observed during fracture axe the change in strength and the occurrence 
of additional porosity in connection with the appearance QE black dis- 
integration, the appearance of so-called dilatancy of the me&urn. 

It is assumeBfnt&e formulatzon af the mathematical smdefs for such 
media in iti-9/ that the rate of the dilatancy component of the bulk 
strain is propartiona'l ta the shear rate. The rate of the dilatancy 
component of the bulk strain fn /7, 9/ depends additionally on the first 
invariant of the stress tensor, 

1, Let us consider the available experimental data characterizing the fracture pxocess 
for specimens of sufficiently strong rocks. 

Fig.1 shows reauZts of testing grey sand specimens with density ~==2.@ gfcm'* porosity 
u = 5.9% under non-proportional loading conditions /15/ fa,,o, ==a* =J ~exis%,ar,~~~e~ are the 

principal stxessesl. Eere? CI = Ii, (dr + 2Qs), e is the bulk strain. Tests were performed on a 
"rigid" apparatus which enabled us to obtain the descending section on the material strain 
diagram. The values of asvaried during testing between 3 and 150 RPa in different tests. 

The presence of three characteristic points corresponding to the appearance of plastic 
deformation+%, the achievement of the maximum specimen strength, i.e., the maxhwn stress 

?TF$ and the aehifitrement af the residual strength when the increase in the bulk strain 
ceases, should be noted. 

An analogous ~~en~~~~~ is also observed for conditions of proportional specimen loading 

WJ* = const, u* = a,) /l.Of. 
The geometric loci of these three classes of points in the I/&o: plane will be curves 

corresponding to the conditions of the initial, maxiznm f and residual strength, which are 
~~i#usl~~~d~~~dentof rha loarting trajsctoW fl?, 1e/* 

Processfng the lcesults of experiwents f12-L4P, candueted with hOU.OW and salid 
cylindrlca1 specimens of different nmuntain rocks under f;onditions of s;imulraneouscanrpressi#n 



106 

and torsion (~1 #o,# (TV) showed, rn particular, that the curves of the initialandmaximum 
strength can also be considered to be independent of the third stress tensor invariant I, 

a1 e2e3. The corresponding maximum strength curves for certain rocks are presented, according 
to the data in /12/, in Fig.2 (curve 1 is for limestone, y : 2.60g/cm3, @,* = '* 'i ?‘;, . , and 
curve 2 is for dolomite, y : 2.84 g/cm3, 14' : 0.9%). The 

d, MPa 

-60 -PO 
8 2-I 

Fig.1 

a uo 4 MPa 

Fig.2 

2. The experimental data presented above enable us to introduce three limit character- 
istics of the rocks, the initial strength condition F* (%I) = 0, the maximum strength con- 
dition p, (%j) = 0, and the residual strength condition F, (et,) = 0. 

Assuming these conditions to be independent of the loading history and of the third 
stress tensor invariant as an essential hypothesis, we write them in the invariant form 

1/5,=F,(o), k=i, 2, 3 (2.1) 
a = I,l3, II = aCk, J, = I, - I,‘/6 = I/, s,ps,, 

where IX, I, are the stress tensor invariants St1 = %f - as,, are the stress tensor deviator 
components, and u;I are the stress tensor components, i, j = i, 2, 3. 

We will introduce a relationship expressing the condition of plasticity in shear strain, 
which as is seen from the experimental results presented above will depend on the hardening 
characteristics in the general case. We will take the bulk plastic dilatancy deformation er,P 
as the hardening parameter and we will use for the plasticity condition in shear 

r/& = F(o, eDP) cw 

Taking account of the plasticity condition (2.2), we write the flow relationships for 
the plastic shear strain increments, as in /2/, in the form 

Ge,;-_G(el,--fe,~~,,)=~ + LS,, (2.3) 

x=GEL$E!!Le(W*)e(1/5^,-F) (2.4) 

w' = Stlelt' (2.5) 

Here et* is the strain rate tensor; the remaining notation is standard /2/. 
The definition of the shear strain unloading is also contained in these relationships: 

et1 'P = 0 should be in such an unloading, but by definition elJ ” =i: h SlJ/G in (2.31, there- 

fore, efJ ‘p = 0 for 1 T 0, and according to (2,4) this holds for w-0 and V.&-E F 
since e(U) = i for u>O and e(u)= 0 for ~(0. 

Furthermore, we shall assume thatthe plasticity condition (2.2) is associated with the 
limit characteristics (2.1) introduced above by the relationships 

F = FA = (F, - Fz) fl (eDpI i- FZ 
F = Fe = (F, - F,) fa (P.D’) + F, 

(2.6) 
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Here FA corresponds to the pre-limiting loading and strain states, i.e., the states being 
realized on changing from the initial to the maximum strength, and Fg correspond to the post- 
limiting, states i.e., the states obtained on changing from the maximum to the residual 
strength. The functions f,, I1 determined experimentally characterize the dependence of the 
shear plasticity condition on the hardening parameter en'. 

3. We will now construct relationships governing the volume deformability of a medium. 
The volume strain rate de/&= e = e kk is represented in the form of a sum of the elastic 
component e'and the plastic component 8, while8 is represented in the form of the sum of a 
"hydrostatic" component enp and a dilatancy component ~np . 

As in /2/, we take a deformation-type dependence 

e' = ew - .snp = g~(u, eg) (3.1) 
for the elastic part cc of the bulk strain hydrostatic component es. 

The family of lines in the u,e' plane governed by relationship (3.1) for enp = const 
is the elastic strain law for hydrostatic loading. The cumulative hydrostatic component of 
the irreversible bulk strain is determined by the "kinetic" equation 

and the function Cp is obtained from (3.1) for ec = eLar, a = c+, where 

c+ -f (en+) = f (es" + CL) (3.3) 

The function f (f' is the function inverse to f) in (3.21 and (3.3) governs the loading 
branch of the hydrostatic compression diagram of the medium. 

The definition of unloading from the plastic deformation state during hydrostatic loading 
and unloading processes is also contained in the relationships presented above. 

To determine the dilatancy component of the plastic strain EDP we take a hypothesis ex- 
pressed by the relationship 

where w'is the energy dissipation rate by the shear strains determined by means of (2.41, 
J,(j = 1, 2, 3) are the stress tensor invariants,and Al arecertain functions of the quantities 

Jj, eDPv enp and possibly other parameters. 
Definitions of the loading and unloading concepts for dilatancy strain are contained in 

relationship (3.4): hDp>o for w'> 0 for loading, and den'=0 for w'<o for 
unloading. 

In general the relationship (3.4) is not integrable with respect to the variable JI,where 
Al can depend on the loading "history" in a complex manner, i.e., on the parameters e2, 812 
and others and can also be distinct in the pre- and post-limit states. 

In the special cases of simple loading trajectories, for instance for q- u,, or/u1 - CoMt 
or for ut = u, = con& and increasing ulr as hold in the experiments discussed above, the 
relationship (3.4) can be integrated and reduced to the form 

CD’ - @ (a, mt 11, 01) (3.5) 
where 41 are parameters characterizing this class of loading 
(3.5) will certainly be distinct for the pre- and post-limit 

The relationships constructed above form a closed model 
versible shear, bulk hydrostatic and bulk dilatancy strain. 

trajectories. The representation 
loading modes. 
of a medium experiencing irre- 
According to the model relation- 

ships, the mechanical energy dissipation (the work of the stress on the irreversible strain) 
is positive. 

4. Processing of the available experimental results /lo-22/ enabled us to make this 
model specific as follows. The function @ characterizing the pre-limit strain of the medium 
was obtained in the form 

(4.1) 

where R,is the strength of rocks under tension (compressive stresses are considered to be 
positive, i.e., R, <Oh a, x are experimental coefficients presented in the table of dif- 
ferent rocks, and also in Fig.3 as a function of values of the elastic wave propagation 
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velocity a,in these rocks; (r/&J, is the value of fx 
k = 1. 

Mountain Rock 

Quartziter [Z] 

Sandstone P-O [II 

Diorite' [lo] 

Quartzite [19] 

Granodiorite, [I7 

Granite [21] 

Diabase [lo] 

Siltstone [lo] 

Granite 1151 

Sandstone: [IS] 

Sandstone D-8[1( 

Sandstone 1171 

Limestone [IO] 

- 

31 

1 

)I 

R,. l4Z.Z 

“o. 

281 

6400 
235 
6060 
232 
6000 
211 
5850 
207 
5600 
263 
4900 
200 
5750 
181 
5600 
160 
5300 
140 
5100 
134 
5030 
132 
4900 

- 

2.76 
0.36 
- 
0.15 

_ 

2.67 
0.7 
2.65 
1.3 
2.97 
0.98 

- 

- 

2.49 
5.9 
2.49 
7.4 
2.45 
8.5 
2.97 - - 

a x NJ 

x 

0.5 

f 

3.6 
2.71 
2.65 
3% 
10.4' 
4.3 
2.0 
4.0 
2.86 
3.82 
5.31 
2.0 
3.18 --. 
2.09 
40.6. 
3.11 
76.4. 
2,81 
1.89 
4.92 
2.5 
5.0 
5.6 
4.61 

Z*XlW 

x* 

- 

- 

- 

17.5 
0.62 

- 

- 

- 

31.12 
0.57 
16.15 
0.52 

- 

- 

- 

T 

satisfying condition (2.1) for 

a, a, (II 
-4 -Jt v, 

- 
1.16 
0.96 
3.15 
0.86 
2.65 
0.88 
1.45 
0.99 
1.37 
0.89 
0.89 
0.99 
3.01 
m 
5.0 
i?B 
2.23 
0.9 
6.6 
0.75 
2.44 
C?z 
2.5 
KS 
2.24 
CiB 

5.86 
0.79 
5.61 
0.79 
6.21 
0.79 
1.65 
KS 
6.26 - 
0.76 
3.16 - 
0.88 
3.92 - 
0.85 
7.i 
0.75 
1.86 
u.y4 
6.0 
0.78 
8.88 
Y 0.12 
8.79 
0.71 
11.31 
0.65 

- 

- 

2.02 
0.93 

- 

- 

- 

- 

1.04 
1.0 
3.64 
0782 

- 

- 

- 

The values of a0 indicated in the table (except those cited according to /17, 21/j were 
determined from data in /23/ as a function of strength under uniaxial compression. 

Figs.4a and b show as an example the results of determining the functions (4.1) from 
experimental data /lo/ corresponding to the results of testing grey sandstone specimens with ..- 
y = 2.76 g/cm3 and W= 0.36% under proportional loading conditions. The numbers 1-4 on the 
graphs denote the test data for the respective values of uz/o, :l-0;2-0.069; 3-0.116;4-0.178. 
It is seen that the experimental points corresponding to different values of the ratio +* 
are described well enough by one curve. 

The post-limit plastic bulk strain is represented by the relationship 

where a,,' x* are the experimental coefficients (see the table), (1/T& is the value of 

-r/s, when condition (2.1) is satisfied fork- 2, Rand R is the strength of the mountain 
rock under tension, taking its variation during the fracture process into account. 

Exactly as in the case of the pre-limit strain, the experimental points for different 
values of a.(1 - 3;2- 10; 3-25; 4-50; 5 - 100; 6 - 150MPa) are described well by a single 
curve (Fig.5). 

2000 4000 6000 oo, m/set 

Fig.3 
Fig.4 
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Fig.5 

The functions PI (c) are obtained in the form 

FI, (a) = et (c - RP) "k, k 4 i, 2, 3 (4.3) 

where the values of ek, vk are presented in the 
table for different rocks. The points 1 In Fig.Ga 
and b are referred to the quantities v11 a1 and the 
points 2 to va,+. 

The functions /l(eo") and fz(enP) are rep- 
resented by the formulas 

5, = 1 - ‘2$ 
t 1 q’ ) 

f,_l_ ‘EDP 
De t 1 q’ 

4h 
(4.4) 

where &, e&, are values of the volumetric strain 
of disintegration corresponding to conditions (2.1) 
for k = 2, 3; q, = 0.2-0.5, qz = 0.9-1.2 are experimental 
coefficients for mountain rocks (see the table). 

Fig.6 

The results presented above for the processing (with the exception of those marked by 
asterisks in the table) indicate the sufficiently representative correlation dependence of the 
parameters a! x, elr 02, 011 VI9 v2, vJ for the majority of the mountain rocks considered on the 
velocity of elastic wave propagation a,in these rocks. 

The correlation dependences obtained can be utilized for preliminary estimates of the 
main mountain rock characteristics within the framework of the proposed model when data is 
available solely on the longitudinal elastic wave propagation velocity a~. 
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STRENGTH CRITERIA OF AN ANISOTROPIC MATERIAL* 

B.E. POBEDRYA 

Strength criteria are proposed for anisotropic materials as a general- 
ization of the well-known phenomenological criteria for an isotropic 
medium based on the introduction of certain functions of the stress tensor 
invariants. 

1. The viewpoint, according to which a composite is treated as a certain reduced homo- 
geneous body /l, 2/, is well-known. If even each component of the composite is isotropichere, 
the reduced body possesses an anisotropy which is customarily called structural /2/. 

A fairly large number of strength criteria, that agree to some extend with experimental 
data /3, 4/,-have-been developed for isotropic materials. The majority are based on 
introduction of a certain function, which depends on the stress tensor, that describes 
surface encompassing the safe stress states in the stress space 

F(Y,, YZ, Y,) - 0 

The function (1.1) should understandably depend on the temperature and possibly 
parameters of a physicochemical nature. However, for simplicity we shall consider all 

the 
a 

(i.1) 

other 
these 

parameters to be fixed. Here YC; (a = i, 2, 3) are three independent invariantsofasymmetric 
stress tensor /5/, for which we can select, say 

Y, = 8 = UI;, Yz = u, = (s~,s~,)“*, Y, - det 1 sll 1 (1.2) 

where 0: is the intensity of the stress tensor IIallII; summation from l-3 is over repeated 
subscripts. 

It is sometimes assumed that the function F is independent of the third invariant .Y, and 
the criterion (1.1) is represented in the form 

f (4 = K @I 0.3) - 
*Prlk~.Natem.~elekhan., 52,1,141-144,1988 


